

IP3005

Ultra-high precision built-inMOSFETSingle lithium battery protectionIC

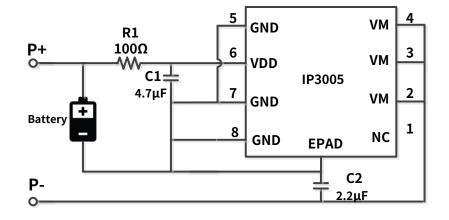
1characteristic

- Single-cell Li-ion/Li-polymer battery protectionIC
- Built-in ultra-low on-resistanceMOSFET -Ron=25mΩ,(VDD=3.6V,ILOAD=1A)
- Ultra-high precision voltage detection protection
 - Overcharge voltageVcu:4V ~ 4.575V(25mVStepping Accuracy ±50mV
 - Overcharge recovery voltageVcL:3.85V ~ 4.4V, (50mV Stepping
 - Accuracy: ± 100 mV
 - Over discharge voltageVol:2.3V ~ 3V, (100mVStep)
 Accuracy ±100mV
 - Over discharge recovery voltageVbr:2.4V ~ 3.1V, (100mV
 Stepping
 - Accuracy: ± 100 mV
- Ultra-high precision current detection protection
 - Discharge current protection:4A~10A, (250mAStep)
 Accuracy ±15%
 - Charging current protection:2A~8A, (250mAStepping Accuracy ±15%
- 0V-Battery charging allowed
- Ultra-low power consumption:
 - Working Mode:3.0µA
 - Shutdown Mode:1.5µA
- Multiple protections, high reliability
 - Load short circuit protection
 - ESD 4KV

Small heat sinkeSOP8LEncapsulation

2application

- Single-cell rechargeable lithium-ion/lithium-polymer battery devices
- Power Bank, Tablet Computer

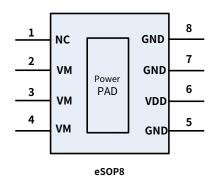

3Introduction

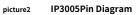
IP3005seriesICIt is an ultra-high precision single-cell lithium-ion/lithium polymer battery protection chip with built-in powerMOSFET, fully integrated with ultra-high precision overcharge voltage, over-discharge voltage, over-discharge current, and overcharge current detection protection circuits.

IP3005Adopts precise voltage judgment circuit to detect overcharge voltage, overcharge recovery voltage, overdischarge voltage and overdischarge recovery voltage. The measurement accuracy reaches \pm 50mVBy monitoring the built-in powerMOSFET The current makes the threshold of charge overcurrent and discharge overcurrent reach \pm 5% The accuracy does not change with battery voltage.

IP3005seriesICIt has a wide range of voltage protection and over-current detection options, and has fine gear steps, which can be adjusted according to user requirements. Achieve diversified customization.

IP3005seriesICuseeSOP8LPackage, with small heat sink, with built-in powerMOSFETExtremely low on-resistance, excellent heat dissipation under high power operation.




picture1Simplified Application Schematic

4Pin Definition

Pinout		describe	
Serial number	name		
1	NC	NC pin, need to be left floating	
2,3,4	VM	The negative electrode of the charger or load is connected to the	
		powerMOSFETconnect.	
5,7,8	GND	Ground, connected to the negative terminal of the battery, inside the chip	
		With powerMOSFETconnect.(allGNDAll	
		Must be connected, cannot float in the air)	
6	VDD	Power supply, connect to the positive terminal of the battery	
Power PAD		EPAD, the current needs to beGNDconnect	

Product Model List

	Key Features										
model	^{Overcharge} Voltage VCU /V	overcharge recover Voltage VCL /V	^{Overrelease} Voltage VDL /V	Overrelease ^{Complex voltage} VDR /V	^{Overcurrent} Current A	Overcharge Voltage Accuracy MV	maximum continued Current A	MOS Internal resistance mΩ	0Velectricity Pool Charge electricity	application	Encapsulation
IP3001A	4.28	4.1	2.5	3.0	3.6	50	3	27	Yes	1A mobile power, blue Bluetooth Speaker	SOT23-5
IP3001B	4.42	4.2	2.5	3.0	3.6	50	3	27	Yes	1A mobile power, blue Bluetooth Speaker	SOT23-5
IP3003A	4.28	4.1	2.5	3.0	1.5	50	1	30	Yes	Wearable devices	DFN6
IP3003B	4.42	4.2	2.5	3.0	1.5	50	1	30	Yes	Wearable devices	DFN6
IP3005A	4.28	4.1	2.5	3.0	7	50	5	25	Yes	2A Power Bank	ESOP8
IP3005B	4.42	4.2	2.5	3.0	7	50	5	25	Yes	2A Power Bank	ESOP8
IP3006A	4.28	4.1	2.5	3.0	7	50	5	27	Yes	2A Power Bank	DFN6
IP3006B	4.42	4.2	2.5	3.0	7	50	5	27	Yes	2A Power Bank	DFN6

Minimum package:2.5K/roll

5Limit parameters

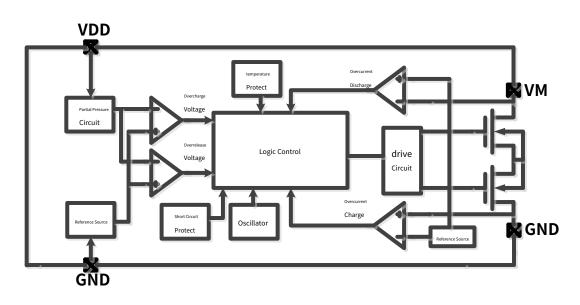
parameter	symbol	value	unit
VDDInput voltage	Vdd	- 0.3 ~ 10	V
VMInput voltage	Vm	- 3 ~ 7	V
Junction temperature range	TJ	- 40 ~ 150	°C
Storage temperature range	Tsj	- 60 ~ 150	°C
Thermal resistance (junction to ambient)	θια	50	°C/W
Human body model (HBM)	ESD	4	KV

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device.

Exposure for too long may affect the reliability and service life of the device.

6Electrical Characteristics

Unless otherwise specified,TA=25°C


parameter	symbol	Test conditions	Minimum	Typical Value	Maximum	unit	
Voltage detection	Voltage detection						
^{Overcharge voltage} Vc∪= 4V~4.575V, 25mv step	Vcυ		Vcu- 0.05	Vcυ	Vcu+0.05	v	
Overcharge recovery voltage VCL= 3.85V~4.4V, 50mv step	Vcl		VcL-0.1	Vcl	Vcl+0.1	V	
over discharge voltage VDL= 2.3V~3V, 100mv step	Vdl		Vdl-0.1	Vdl	VDL+0.1	V	
over discharge recovery voltage V _{DR} = 2.4V~3.1V, 100mv step	Vdr		Vdr-0.1	Vdr	Vdr+0.1	V	
Charge detection voltage	Vсна		0	- 0.12	- 0.2	V	
Overcharge voltage protection delay time	t c∪		240	320	400	ms	
Over discharge voltage protection delay time	tdl		40	80	120	ms	
Current Sensing							
Discharge overcurrent liov= 4A~10A, 250mA step	Ιιον		0.85* liov	liov	1.15* liov	A	
^{Charging overcurrent} lioc=2A~8A,	Іюс		0.85* lioc	Ιιος	1.15* lioc	А	

IP3005

250mA step						
Short circuit current	lsc		13		17	А
Discharge overcurrent protection delay time	tıov		5	10	15	ms
Charge overcurrent protection delay time	t ioc		5	10	15	ms
Short circuit protection delay time	t sc		200	600	1000	μs
Power consumption						
Normal operating current	Iope	VDD=3.6V,VM=0V		3.0	3.7	μA
Shutdown current	IPDN	VDD=2V,VM=VDD		1.5	1.8	μA
Control System						
VMPull-up resistor	Rvmd			320		kΩ
VMPull-down resistor	Rvмs			30		kΩ
MOSFETOn-resistance	Ron	VDD=3.6V,Ivm=1A		25	27	mΩ

7Functional structure diagram

picture3Internal functional structure diagram

8Functional Description

Charging overvoltage

When the battery voltageVDD>Vcu, andt>tcuWhen, it is charging overvoltage state.IP3005Will control the internal charging logic and shut down the internal powerMOSFET, so that the battery stops charging. When the following two situations occur, the charging overvoltage state will be released:

- (1) When the charger is connected, when the battery voltage drops to the overcharge recovery voltageVcLWhen the chip turns on the internal power MOSFET, return to normal working state;
- (2) When the charger is not connected, the chip turns on the internal powerMOSFET, return to normal working state.

The specific implementation is as follows: When the load is connected to the battery terminals, the battery starts to discharge and the current flows through the internal powerMOSFET The internal parasitic diode discharges, and at this timeVMThe voltage immediately changes from0VRise to0.7VAround (diode conduction voltage), the chip detects VMvoltage and release the overcharge state.VDD<=Vcuhour,IP3005In addition, when the load at both ends of the battery begins to discharge, ifVMThe voltage is too small to trigger the discharge detection and the circuit will not return to normal state.

whenVDD>VcuEven if the load is connected to cause discharge overcurrent, the battery voltageVDDReduce toVcuBecause of the internal resistance of the battery, the battery voltage will drop at the moment the load that causes discharge overcurrent is connected.VcuIf the load is short-circuited, the battery voltage will drop toVcuBelow, it enters the short circuit protection state.

Discharge undervoltage

When the battery voltageVDD<VDL, andt>toLlt is in discharge undervoltage state.IP3005Will control the internal discharge logic and shut down the internal powerMOSFET, so that the battery stops discharging.

When the internal powerMOSFETis turned off, the chip internalVMandGNDPull-up resistorRvmbwill makeVMThe voltage rises. VM>1.5V,Ivpp< IPDNWhen the chip enters the shutdown sleep state. In the discharge undervoltage and shutdown sleep state,VM andVDD Through the resistorRvmbWhen the charger is connected,VMandVDDThe pressure difference between1.3VThe shutdown sleep state will be released, but the internal powerMOSFETis still shut down, only when the battery voltage recovers to >=VpLThe chip will resume normal operation.

When the charger is connected to a battery in a discharged undervoltage state, if VMThe pin voltage is not less than the charge detection voltage V_{CHA} When the battery voltage >= over-discharge recovery voltage V_{DR} When the under-voltage state is released, the chip returns to normal working state.

Discharge overcurrent

During normal discharge, if the discharge current exceeds the discharge overcurrent threshold¹⁰⁰, andt>toovhour, IP3005Will control the discharge logic and shut down the internal powerMOSFET, stop discharging and enter the discharge overcurrent state.

When the discharge current is too high, VMandGNDThrough the internal resistorRvwsWhen the load is connected, VMThe voltage is approximately equal toVDDVoltage, whenVM andVDDThe impedance betweenVMThe voltage drops toGNDWhen the load is disconnected, the discharge overcurrent state will be released. VMandGNDResistorRvws Short circuit, VMThe voltage drops directly toGND, the discharge overcurrent state will be released and the chip returns to normal working state.

Charging overcurrent

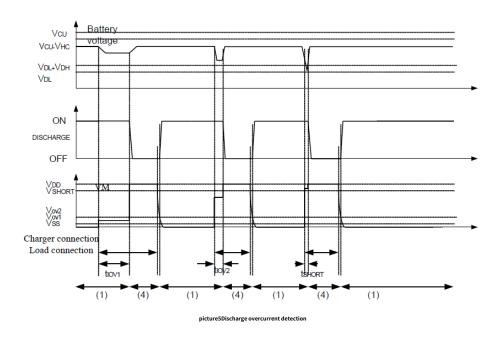
When the charging current exceeds the charging overcurrent threshold lioc, and t>tochour, IP3005Will control the charging logic and shut down the internal powerMOSFET, stop charging and enter the charging overcurrent state.

Charging overcurrent detection is only available whenVM<= VCHAWhen the battery is over-discharged and under-voltage, if there is an overcharge current flowing in, it will only be turned on when the battery voltage returns to the over-discharge voltage.VoLWhen the power is turned offMOSFET, stop charging.

When the charger is disconnected,VM>=VCHAThe over-current state will be released only when0V-The battery charging function takes precedence over the overcharge current detection. When the battery voltage is very low, the charging overcurrent protection does not work.

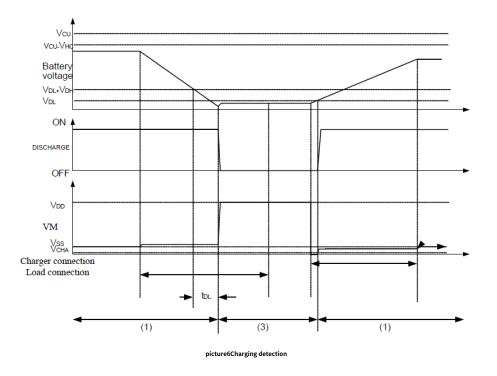
OV-Battery Charging

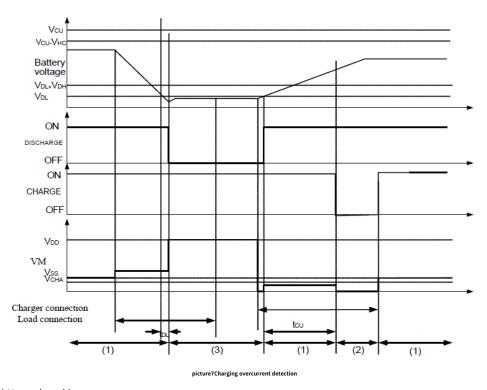
When the battery voltage drops due to self-discharge0Vhour, Still able to charge. If one has0VThe charger for charging function is connected toP+andP-end, IP3005 Internal logic controls chargingMOSFETThe gate is equal toVDD, whenMOSFETWhen the gate-source voltage is greater than or equal to the start voltage of the charger voltage, the charger MOSFETTurn on and start charging. At the same time, dischargeMOSFETShut down, the charging current is charged through the internal parasitic diode, and the battery voltage is greater than the over-discharge recovery voltageVonWhen the chip enters normal working state.


9Functional Timing

Overcharge and overdischarge detection

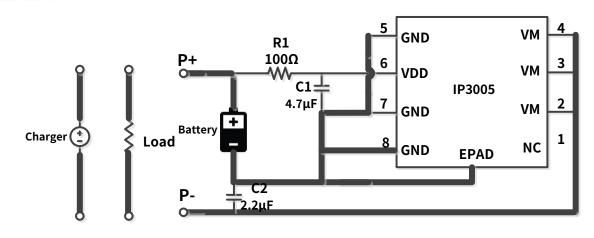
picture4Overcharge and overdischarge detection


Discharge overcurrent detection



Charging detection

Charging overcurrent detection



Notes: (1) Normal working status; (2) Charging overvoltage state; (3) Discharge undervoltage state; (4) Discharge overcurrent state;

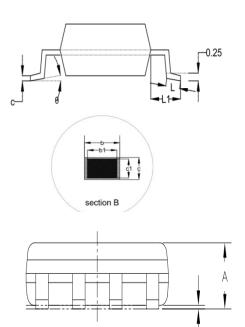
10Typical application schematic diagram

As shown below8As shown in the typical application diagram, the thick line part is the high current path of the chip, so it is necessary to ensure that the line is as short as possible and the routing is as wide as possible to meet power and heat considerations.

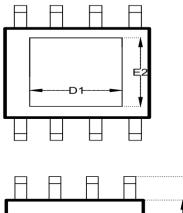
picture8Typical application diagram

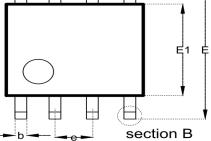
Component parameter description

(1) ClandR1It forms a power filter to suppress power ripple.C1Need to be closeVDDPin to enhance filtering effect, it is recommended to use 4.7µF.


(2) R1The resistance value should not be too large when charging or discharging>1AWhen the current monitoring function is turned on, the chip will start monitoring the current.VDDThe pin current will also increase accordingly.R1A resistance value that is too large will introduce excessive voltage drop.ICofVDDThe actual voltage of the pin is lower than the battery voltage.100Ω.

(3) C2It is used to suppressVMThe peak voltage of the port is prevented from being caused by the instantaneous change of large current.VMThe voltage jitter is too high, which may damage the chip.VMPin, recommended2.2µF.





11Packaging information

0////	MILLIMETER				
SYMBOL	MIN	NOM	МАХ		
А			1.65		
A1	0.05		0.15		
A	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.39		0.48		
b1	0.38	0.41	0.43		
с	0.21		0.25		
c1	0.19	0.20	0.21		
D	4.70	4.90	5.10		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
e	1.27BSC				
h	0.25		0.50		
L	0.50	0.60	0.80		
L1	1.05BSC				
θ	0		8°		
D1		2.09			
E2		2.09			